IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciencer:
Corporation

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtaln the best original copy avallable for filming. Features of this copy which may be blbllographically unique, which may alter any of the images in the reproduction, or which may significently change the usual method of filming, are $c^{\prime \prime}$ sked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured Ink (i.s. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from fil ning/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texto, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'll lul a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibllographique, qui peuvent modifier une image reprodulte, ou qui peuvent exiger une modification dans la móthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damagsd/
Pages endommagéesPages restored and/or laminated/
Pagos restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., havi weon refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon a obtenir la meilleure image possible.Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charta, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce â la générosit' de:

Douglas Library
Queen's University

Les images suivantes ont dté reproduites avec ie plus grand soin, compte tenu de la condition et de le netteté de l'exemplaire filme, et en conformitt avec ies conditions du contrat de filmage.

Les exemplaires originaur dont la couverture en papier est imprimbe sont filmés en commençant par le premier plat ot en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'iliustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiere page qui comports une empreinte d'impression ou d'iliustration et en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernid̀re image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le clocument est trop grand pour âtre reproduit en un soul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, ot de haut en bas, en prenant le nombre d'ímages núcessaire. Les diegrammes suivants illustrent la méthode.

THE COMPUTATION

of the

TRANSITS 0F VENUS

FOR THE YEARS 1874 AND I882,

AND OF

yercury for the fear 1878,

FOR THE EARTH GENERALLY AND FOR SEVERAL PLACES IN CANADA:
with a
POPULAR DISCUSSION OF THE SUN'S DISTANCE FROM TIE EARTH, AND AN APPENDIX SHEWING THE METHOD OF COMPUTING SOLAR ECLIPSES.

BY
J. MORRISON, M.D., M.A.,
(M.B., University of Toronto),

MEMBER GF THE MEDICAL COUNGL, AND EXAMINER IN THE COLLEGE OF PHYSICIANS ANJ SURGEONS GF ONTARIO.

TORONTO:

ROWSELL \& HUTCHISON. 1873.

QB512.M8

Entered according to Act of Parliament of Canada, in the year one thousand eight hundred and seventy-three, by J. Morrison, in the Office of the Minister of agriculture.

TORONTO :
PRINTED BY ROWSELL AND HUTCHISON,
KING STREET.

PREFACE.

The following pages were drawn up for the use of Students pursuing the higher Mathematical course in our Colleges and Universities. All the necessary formulio for calculating transits of the planets and solar eclipses from the heliocentric elements, have been investigated in order to render the work as complete in itself as possible; and while I have endeavoured to simplify the computation, I have, at the same time, given as full an account of the various circumstances attending these phenomena, as is to be found in any of the ordinary works on Spherical and Practical Astronomy.
This is, I believe, the first work of the kind ever published in Canada, and therefore I hope it will tend to encourage, in this country at least, the study of the grandest and noblest of the Physical Sciences.

> J. M.

[^0]In preparation by the same Author.

FACTS AND FORMULE IN PURE AND APPLJED MATHEMATICS,

For the use of Students, Teachers, Engineers, and others.

A TRANSIT OF VENUS.

Decembeir 8tio 1874.

Arr. 1.-A transit of Venus over the Sun's disk, can only happen when the planet is in or near one of its nodes at the time of inferior conjunction, and its latitude, as seen from the Earth, must not exceed the sum of its apprent semi-riameter and the "ppurent semi-dimmeter of the Sum, or $31^{\prime \prime}+961^{\prime \prime}=99 \mathbf{2}^{\prime \prime}$; and therefore the phanet's distanee from the noile must mot exceed $1^{\circ} 50^{\prime}$.

If the Earth and Venus be in conjunction at either of the nodes at any time, then, when they return to the same position again, eat of them will have performed a certain number of complete revolutions.

Now the Earth revolves romme the Sun in 36:5.256 days, and Venus in 224.7 days; and the converging fractions aproximating to

$$
\frac{224.7}{365.256}, \text { we } \frac{8}{13}, \frac{235}{382}, \frac{713}{115!}, \text { de., }
$$

where the numerntors express the number of sidereal years, and the denominatots the number of revolutions made by Venus rombl the Smin the same time nemrly. Therefore transits may be expected at the same node after intervals of 8 or 235 or 713 years. Now, there was a tramsit of Venus at the descending node, June 3rd, 1769 ; and one at the ascending node, December 4th, 1639. Hence, transits may be expected at the descending node in June, 2004, 2112, 2247, 2255, 2490, 2498, de.; and at the ascending node in December, $1=74,1882,5117,2125,2360$, 2368 , de. In these long 'raiods, t e exact time of conjunction 'may differ many hou's, or even four or five days fom that found by the addition of the complete siderce years, according to the
preceding rule, which supposes the place of the node stationary, and that the Earth and Venus revolve round the Sun with miform velocities-hypotheses which are not strictly correct. In order, therefore, to ascertain whether a transit will actually necur at these times or not, it will be necessary to calculate strictly the heliocentric longitude and latitude, and thence tho geocentric longitude aud latitude at the time of conjunction; then, if the geocentric latitude be less than the sun of the apparent semi-diametcrs of Venus and the Sum, a transit will certainly take place. The present position of Vemus's nodes, is such that transits can only happen in June and December. The next four will take phace December 8th, 1874, December (ith, 1882, June 7th, 2004, June ēth, 2012.

APPIROXIMATE TIME OF CONJUNCTION IN LONGITUDE.

Arr. 2.-From the Trbles of Venus" and the Sunt, we find the heliocentric longitude of the Earth and Venus to be as follows:-

Greenwich Mean Time.	Earth's Heliocen, Long.	Venus's Helliocen. Long.
Dec. 8th, 0h. (noon)	$76^{\circ} 17^{\prime} \quad 33^{\prime \prime} .5$	$75^{\circ} 592^{\prime} 55^{\prime \prime} .1$
Dec. 9th, 0h. "	$77^{\circ} 188^{\prime} 34^{\prime \prime} .3$	$77^{\circ} 29^{\prime} 40^{\prime \prime} .6$

From which it is seen that conjunction in lougitude takes place between the noons of the 8th and 9th December.
The daily motion of the Earth $=1^{\circ} 1^{\prime} 0^{\prime \prime} . S$.
The daily motion of Venus $=1^{\circ} 30^{\prime} 4 \bar{j}^{\prime \prime}$.j.
Therefore Venus's daily gain on the Earth $=3 J^{\prime} 44^{\prime \prime} .7$, and the difference of longitude of the Earth aud Venus at December 8 th, $0 \mathrm{~h}=24^{\prime} 38^{\prime \prime} .4$, therefore we have

$$
35^{\prime} 44^{\prime \prime} .7: 24^{\prime} 38^{\prime \prime \prime} .4:: 24 \mathrm{~h} .: 16 \mathrm{~h} .32 \mathrm{na} .
$$

Hence the approximate time of conjuction in longitude is December 8th, 16h. $3 \pm \mathrm{m}$.

[^1]onary, with orrect. cually culate e the ction ; of the t will uodes, mber. ember

The exact time of conjunction will be found presently by interpolation, after we have computed from the Solar and Planetary Tables, the heliocentric places of the Earth and Venus (and thence their geocentric places) for several consecutive hours both before and after conjunction, as given below :-

Greenwich Mean Time.	Earth's Heliocentric Longitude.	Venus's Heilocentric Longitude.	$\begin{gathered} \text { Venus's } \\ \text { Hehiocentric } \\ \text { Latitude. } \end{gathered}$
Dee. 8th, 14h.	$76^{\circ} 53^{\prime} 8^{\prime \prime} .9$	$76^{\circ} 49^{\prime} 21^{\prime \prime} .4$	$4^{\prime} 30^{\prime \prime} \mathrm{N}$.
" 15h.	765541.4	765323.3	444.3
16 h .	765813.9	765725.2	458.6
17 h .	77046	77127	513.
18h.	$77 \quad 319.1$	$75 \quad 59$	527.3
" 19h.	$77 \quad 551.7$	$77 \quad 630.9$	541.6

The Sun's trine longitude is found by adding 180° to the Earth's longitude.

Grcenwich Mean Time.	Log. Earth's Radius	Log Venus's Ralius
Dee. 8th, 14h.	9.9932897	0.8575364
" 15h.	9.9932875	9.8575336
16h.	9.9932854	9.8575309
1\%h.	9.9932833	9.8575281
181.	9.9932811	9.8575253
" 19h.	9.0932790	9.8575225

Venus's Equatorial hor. parallax $=33^{\prime \prime} .9=P$. (See Art. 6.)
Sun's Equatorial hor. parallax $=9^{\prime \prime} .1=\pi$.
Venus's Semi-diameter $\quad=31^{\prime \prime} .4=d$. (See Art. 7.)
Sun's Semi-diameter $\quad=16^{\prime} 16^{\prime \prime} .2=\delta$.
The last four elements may be regarded as constant during the transit.

Sidereal time at $14 \mathrm{~h} .=7 \mathrm{~h} .10 \mathrm{~m} .35 .64 \mathrm{sec} .=$ Sun's mean longitude + Nutation in A.R., both expressed in time.

The places of Venns and the Farth, just obtained, are the heliocentric, or those seen from the Sun's centre. We will now investigate formule for computing Venus's places as seen from the Earth's centre.

GFOCENTRIC LONGITUDE.

Ant. 3.-In Fig. l, let S be the Sun's centre, E the Eurth's and l^{\prime} that of an inferior planet, $S X$ the direction of the vernal equinox. Draw I' P perpendicular to the plane of the Earth's orhit, then $X S E$ is the Earth's heliocentric longitude ; $X S P^{\prime}$ the planet's heliocentric longitude; VSI' the planet's heliocentric latitude $=l ; \Gamma$;' $/$ ' the planet's geocentric latitude $==\lambda$; $P S E$ the difference of their heliocentric longitudes, or the commutation $=0 ; P E S$ the planet's elongation $=E ; S P E^{\prime}$ the phanet's ammal parallax $=p ; S E^{\prime}$ the Earth's radins vector $=R ; V S$ the planet's radins vector $=r$. Then in the triangle $P S E$, we have $P S=r \cos l, E S=R$, and angle $P S E=C^{\prime}$, therefore

$$
\begin{aligned}
& R+r \cos l: R-r \cos l:: \tan \frac{1}{2}(p+E): \tan \frac{1}{2}\left(p-E^{\prime}\right) \\
& \text { But } \frac{p+b^{\prime}}{2}=\frac{180^{\circ}-C^{\prime}}{2} \\
&=90^{\circ}-\vdots
\end{aligned}
$$

Therefore

$$
1+\frac{r}{R} \cos l: 1-\frac{r}{R} \operatorname{ens} l:: \operatorname{eot} \frac{C}{2}: \operatorname{tm} \frac{1}{2}\left(\mu-E^{\prime}\right)
$$

$$
\text { Put } \frac{r}{\mathscr{R}} \cos l=\tan \theta
$$

Then

$$
\begin{align*}
\tan \frac{1}{2}(p-b) & =\frac{1-\tan \theta}{1+\tan \theta} \cot \frac{\theta}{2}, \\
& =\tan \left(45^{\circ}-\theta\right) \cot \frac{\theta}{2}, \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { and } E^{\prime}=90^{\circ}-\frac{C}{2}-\frac{1}{2}(p-E) . \tag{2}
\end{equation*}
$$

Now, before eonjunction, the planet will be east of the Sun, and if H be the Sun's true longitude ($=$ the Earth's heliocentric longitude $+180^{\circ}$), and G the geocentric longitude of the planet, we have

$$
\begin{equation*}
G=M \pm E \tag{?}
\end{equation*}
$$

the positive sign to be used before, and the negative sign after coujunction.

When the angle C is very small, the following method is to be preferred. Draw $P D$ perpendicular to $S E$, then

Surth's vernal Carth's $\boldsymbol{X S} l^{2}$ helio-
$:=\lambda$; or the $S P b^{\prime}$ vector riangle $E=1$ ',

$$
\begin{align*}
S D & =r \cos l \cos C \\
P^{\prime} D & =r \cos l \sin C \\
\tan E & =\frac{r \cos l \sin C}{R-r \cos l \cos C} \\
& =\frac{\tan \theta \sin C}{1-\tan \theta \cos O} \tag{4}
\end{align*}
$$

Then

geocentric latitude.

Art. 4.-From the same figure we have

Or

$$
\begin{align*}
S P \tan l & =V P=P E \tan \lambda \\
\frac{\tan \lambda}{\tan l} & =\frac{P S}{P E}=\frac{\sin E}{\sin C} \\
\tan \lambda & =\frac{\sin E}{\sin C^{\prime}} \tan l \tag{5}
\end{align*}
$$

Therefore
When the planet is in conjunction, this formula is not applicable, for then both E and C are 0°, and consequently their sines are each zero.

Since E, P and S are then in a straight line, we have

$$
\begin{align*}
E P=R & -r \cos l \\
\text { and } E P \tan \lambda & =r \sin l \\
\tan \lambda & =\frac{r \sin l}{R-r \cos l} \tag{6}
\end{align*}
$$

Therefore
distance of the planet from the earth.
Art. 5.-

$$
\begin{align*}
E V \sin \lambda & =V P=r \sin l \\
E V & =\frac{r \sin l}{\sin \lambda} \tag{7}
\end{align*}
$$

When the latitudes are small the following formula is preferable :-

$$
\begin{align*}
& \text { rable :- } \quad \sin E: \sin C: P S: P E \\
&:: r \cos l: E V \cos \lambda \\
& \text { From which } \quad E V= \frac{r \sin C \cos l}{\sin H \cos \lambda} \tag{8}
\end{align*}
$$

horizontal parallax of the planer.

Art. 6.-Let P be the planet's horizotal parallax; π the Sun's parallax at menn distance; then, r being the planet's radius vector, expressed of course in terms of the Earth's mean distance from the Sun regarded as unity,

$$
E V: 1:: \pi: P
$$

From which

$$
\begin{align*}
P & =\frac{\pi}{E V} \\
& =\frac{\pi \sin \lambda}{r \sin l} \tag{9}\\
& =\frac{\pi}{r} \cdot \frac{\sin E \cos \lambda}{\sin C \cos l} \tag{10}
\end{align*}
$$

apparent semi-diameter of the planet.

Art. 7.-The semi-diameter of a planet, as obtained fiom ubservation with a micrometer when the planet is at a known distance, may be reduced to what it would be, if seen at the Earth's mean distance from the sun, viz., unity.

Let d^{\prime} be this value of the semi-diameter, and d its value at any other time.

Then
Thereforo

$$
\begin{align*}
E V: 1:: & a^{\prime \prime}: d \\
d & =\frac{d^{\prime}}{E V} \\
& =\frac{d^{\prime}}{r} \frac{\sin \lambda}{\sin l} \tag{11}\\
& =d^{\prime} \cdot \frac{P}{\pi} \tag{12}
\end{align*}
$$

ABERRA?ION IN LONGITUDE AND LATITUDE.

Art. 8.-Before computing the geocentric places of Venus by the preceding formule, we will first investigate formule for computing the abervation in longitude and latitude.

Lat p and $e(F i g .2)$ be cotemporary positions of Venus and the Earth ; P^{\prime} and E other cotemporary positions after an interval t seconds, during which time light muves from p to e or E.

If the Earth were at rest at E, Venus would be seen in the direction $p E$. Take $E F=c \dot{E}$ and complete the parallelogram
$E R$, then $p E R$ is the aberration caused by the Earth's motion, and $e p$ is the true direction of Venus when the earth was at e. Now $R E$ is parallel to $p c$, therefore the whole aberration = $P E R$, or the planet when at P will be seen in the direction $E R$.

$$
\text { But } P E R=P E p-p E R
$$

$=P E p-E p e$
$=$ the motion of the planet round E at rest, minus the motion of E round p at rest.
$=$ the whole geocentric motion of the planet in t seconds.
Now, light requires 8 minutes and 17.78 sec . to move from the Sun to the Earth, and if D be the planet's distance from the Earth (considering the Earth's mean distance from the Sun mity), then

$$
\begin{aligned}
t & =D \times(8 \mathrm{~min}, 17.78 \mathrm{sec} .) \\
& =497.78 \mathrm{D} .
\end{aligned}
$$

And if $m=$ the gencentric motion of the planet in one second, then

$$
\begin{align*}
\text { aherration } & =m t \\
& =497.78 m D . \tag{13}
\end{align*}
$$

Resolving this along the ecliptic and perpendicular to it, we have (I being the apparent inclination of the planet's orbit to plane of the ecliptic).

$$
\begin{align*}
\text { Aberration in Long. } & =497.78 \mathrm{~m} D \cos 1 \tag{14}\\
\text { A berration in Lat. } & =497.78 \mathrm{~m} D \sin l . \tag{15}
\end{align*}
$$

We are now prepred to compute the apparent geocentric longitude and latitude of Veuus, as well as the horizontal paralhax, semi-diameter, abermation and distance from the Earth.

for the geocentric lengitude.

Art. 9.-At 14 homs, we have, by using Eq. (3,) since the angle C is only $3^{\prime} 47 .{ }^{\prime \prime}$,

$$
\begin{aligned}
\log r & =9.8575364 \\
\cos l & =9.9999996 \\
\log R & =9.9932897 \\
\tan \theta & =9.8642463 \\
\theta & =36^{\circ} 11^{\prime} 15^{\prime \prime}
\end{aligned}
$$

Then $G^{\prime}=256^{\circ} 63^{\prime} 8^{\prime \prime} .9+10^{\prime} 20^{\prime \prime}$
$=257 \quad 3 \quad 28.9$
for the geocentric latitude.
By Eq. (5).

$$
\begin{aligned}
\sin E & =7.4779437 \\
\tan l & =7.1169388 \\
\operatorname{cosec} \zeta & =12.9574438 \\
\tan \lambda & =\frac{7.5523263}{} \\
\lambda & =12^{\prime} 15^{\prime \prime} .8 \text { North. }
\end{aligned}
$$

veitus's distance from the eabtif.
By Eq. (8.)

$$
\begin{aligned}
r & =9.8575364 \\
\sin C & =7.0425562 \\
\cos l & =9.9999996 \\
\operatorname{cosec} E & =12.5220563 \\
\sec \lambda & =0.0000027 \\
\log E V & =\overline{9.4221512}
\end{aligned}
$$

Eq. (7,) gives $\log E V=9.4221513$
venus's horizontal parallax.
'Jhe Equatorial Horizontal Parallax of the Sun at the Earth's mean distance will be taken $=8^{\prime \prime} .95$, instead of $8^{\prime \prime} .577$, for reasons which will be given when we come to discuss the Sun's distance from the Eartl.
l. y Eq. (9.)

$$
\begin{aligned}
& \pi=0.951823 \\
& \sin \lambda=\underline{7.552323} \\
& 8.504146 \\
& r, \text { (irr. comp.) }=0.142463 \\
& \operatorname{cosec} l=\frac{12.883061}{1.529670} \\
& \log P=\frac{13}{} \\
& P=33^{\prime \prime} .9
\end{aligned}
$$

This element is constant during the transit.

VENUS'S SEMI-DIAMETER.

Venus's semi-diameter at tie Earth's mean distance from the Sun, as determined by theory and observation, is $8^{\prime \prime} .305=d^{\prime}$.

By Eq. (12.)

$$
\begin{aligned}
d^{\prime} & =0.91934 \\
P & =\frac{1.52967}{2.44901} \\
\pi & =\frac{0.95182}{1.49719} \\
\log d & =\overline{31^{\prime \prime} .4, \text { constant during transit. }} \\
d & =3
\end{aligned}
$$

Sonie astronomers recommend the addition of abont $\frac{1}{60}$ part for irradiation.

The aberration cannet be computed until we find Venus's hourly motion in orbit as seen from the Earth.

In this manner we obtain from Formule 1 to 12, the following results:-

Greenwieh Mean Time.	Venus's Geocentric Longitude.		Venus's Geocentric Latitude.	Log. Yenusis Distanee from Earth
Dec. 8th, 14h.	257°	3' $28^{\prime \prime} .9$	$12^{\prime} 15^{\prime \prime} .8 \mathrm{~N}$.	9.4221513
" 15 h .	257	157.7	1254.7	
16 h.	257	026.6	$13 \quad 33.7$	9.4221491
" 17h.		5855.9	1412.9	
" 18h.	256	5724.8	1452.0	9.4221342
" 19h.	256	$55 \quad 54.4$	1531.0	

venus's aberration in longitude and latitude.

Artr. 10.-Venus's hourly motion in longitude is $91^{\prime \prime}$, and in latitude $39^{\prime \prime}$ (as seen from the Earth's centre). Since these are very small arcs, we may, without sensible error, regard them as the sides of a right-angled plane triangle.

Venus's hourly motion in orbit $=\checkmark\left(39^{2}+91^{2}\right)=99^{\prime \prime}$ and therefore the motion in one second $=0^{\prime \prime} .0275$

$$
=m
$$

Also

$$
\cos I=\frac{91}{99} \text { and } \sin I=\frac{39}{99}
$$

Then by Eq. (14).

$$
\begin{aligned}
497.78 & =2.697037 \\
m & =8.439332 \\
D & =\frac{9.422149}{0.558518} \\
\cos I & =9.963406 \\
\text { Aber. in long. }=3^{\prime \prime} .32 & =\overline{0.521924} \\
\sin 1 & =9.595429 \\
\text { Aber. in latitude }=1^{\prime \prime} .42 & =\overline{0.153947}
\end{aligned}
$$

The aberration is constant during the transit. Since the motion of Venns is retrograde in longitude, and northward in morth latitude, the aberration in longitude must be added to, and the aberration in latitude subtracted from, the planet's true geocentric longitude and latitude respectively in order to obtain the apparent places.

sun's aberration.

Art. 11.-The Sun's aberration may be found from Eq. (13), by making $D=R$ and $m=$ the Sun's motion in one second.

The Sun's hourly motion in long. $=152^{\prime \prime} .6$, and the motion in one second $=0^{\prime \prime} .0423$

$$
=m
$$

Then aberration (in long.) $=497.78 R \mathrm{~m}$
$=20^{\prime \prime} .77$, and as the Sun always appears behind his true place, the aberration must be subtracted from the true longitude.

Applying these corrections, we obtain the following results :-

Greenwich Mean Time.	Sun's Apparent Lougftude.	Venus's Apparent Geocen. Longitude.	Venus's Apparent Gcocentric Latitude.
Dee. 8th, 14h.	$256^{\circ} 52^{\prime} 48^{\prime \prime} .2$	$257^{\circ} 3^{\prime} 32^{\prime \prime} .2$	$0^{\circ} 12^{\prime} 14^{\prime \prime} .4 \mathrm{~N}$
" 15 h .	$25655 \quad 20.7$	$255 \quad 201.0$	1253.3
16h.	2565753.2	257 0 29.9	1332.3
17h.	257 0 25.8	2565859.2	1411.5
18h.	257 2 58.3	2565758	14. 50.6
" 19h.	$257 \quad 5 \quad 31.0$	$25655 \quad 57.7$	1529.6

APPARENT CONJUNCTION.

Akr. 12.-By inspection we find that conjunction will take place between 16 h . and 17 h .

The relative hourly motion of the Sun and Venus is $243^{\prime \prime} .2$, and the distance between them at 16 h . is $156^{\prime \prime} .7$.

Then $243^{\prime \prime} .2: 156^{\prime \prime} .7:: 1$ hour : 38 m .40 sec.
During this time the Sun moves $1^{\prime} 38^{\prime \prime} .3$, and Venus $58^{\prime \prime} .5$; therefore, by collecting the elements we have:-
Greenwich M. Time of conj. in long. Dec. 8th...16h. 38m. 4Lae. Sun and Venus's longitude $256^{\circ} 59^{\prime} 31^{\prime \prime} .4$.
Vonus's latitude 13' $57^{\prime \prime} .4, \mathrm{~N}$.
Venus's hourly motion in longitude....................... $1^{\prime} 30^{\prime \prime} .7$, W. Sun's do. do. $2^{\prime} 32^{\prime \prime} .5$, E.
Venus's hourly motion in lutitude..... $39^{\prime \prime} .1$, N.
Venus's horizontal parallax $33^{\prime \prime} .9$.
Sun's do. $\mathbf{9}^{\prime \prime}$.1.
Venus's semi-diameter ... $31^{\prime \prime} .4$.
Sun's do. $16^{\prime} 16^{\prime \prime} .2$.
Obliquity of the Eeliptic $23^{\circ} 27^{\prime} 27^{\prime \prime} .8$.
Sidereal time at 14h. (in arc)....................... $107^{\circ} 38^{\prime} 54^{\prime \prime} .6$.
Equation of time at conj. +7 m .34 sec .
The last three elements aro obtained from the Solar T.ables.

TO FIND THE DURATION AND THE TIMES OF BEGINNING AND END OF the transit for tife earth generally.

Art. 13.-'The Transit will evidently commence when Venus begins to intercept the Sun's rays from the Earth, and this will take place when Venus comes in contact with the cone circumscribing the Earth and the Sum.

The semi-diameter of this cone, at the point where Venus crosses it (as seen from the centre of the Earth), is found as follows:-

Let L and S be the centres of the Earth and Sun (Fiy. 3), and V the position of Venus at the beginning of the transit. Then the angle $V E S$ is the radius or semi-diameter of the cone where Venus crosses it.

$$
\begin{align*}
V E S & =A E S+V E A \\
& =A E S+B V E-B A E \\
& =\delta+P-\pi \tag{16}\\
& =976^{\prime \prime} .2+33^{\prime \prime} .0-9^{\prime \prime} .1=1001^{\prime \prime}
\end{align*}
$$

In Pig. t, take A $C=1001^{\prime \prime} ; C$ at right angles to $A C$, $=133^{\prime \prime} 57^{\prime \prime} .4 ; C u=4^{\prime} 03^{\prime \prime} .2$, the relativo hourly motion in longitude; $U^{\prime} m=39^{\prime \prime}$. 1 , the hourly motion of Venus in latiturle, and through E diaw $V X$ parallel to $m n$, then E is the $p^{n s i t i o n ~ o f ~ V e n u s ~ a t ~ c o n j u n c t i o n, ~} m n$ is the relative hourly motion in apparent orbit, and $C H$ perpendicular to $V X$, is the least distance between their centres. The angle $E C F=$ angle $C n m$. Put $E C=\lambda ; C n=m ; C m=g ; C V=C i$ + semi-dimm. of Venus $=c ; C v=O A-$ semi-dinm. of Venus $=l$; and $T=$ the time of conjunction.

Then, by phone Trigonometry, wo huve timn $n=\frac{!}{n} ; m "=$ m sec $n=$ relative hourly motion in "ppurent orbit ; $C F^{\prime}=$ $\lambda \cos n ; F E=\lambda \sin n ;$ time of deseribing $H F=\frac{\lambda}{1 / n} \frac{\sin n}{\sec n}$ $=\frac{\lambda \sin 2 \pi}{2 m}=t$; therefore middle of transit occurs it T It . (Positive sign when lat. is S. ; negative when N.)

Again, $\sin \left(V^{\prime}=\frac{\lambda \cos n}{c} ; V F^{\prime}=c \cos (V ;\right.$ time of describing $V F^{\prime}=\frac{c}{!} \sin n \cos V=t^{\prime}=$ time of describing $F^{\prime} X$, supjosing the motion in orbit uniform, which it is, very nearly.

Therefore first extemal contact oceurs at $T \pm t-\ell^{\prime}$, and last external contact at $T^{\prime} \pm t+t^{\prime}$.
Writing b for c, theso expressions give the times of first and last internal contact.

Substituting the values of λ, c^{\prime}, y and m, we obtain

$$
u=9^{\circ} 7^{\prime} 33^{\prime \prime} .9
$$

Hourly motion in apparent orbit $=246^{\prime \prime} .53 ; C^{\prime} F^{\prime}=13^{\prime}$ $46^{\prime \prime} .8 ; E F=132^{\prime \prime} .8$; time of describing $E F=32 \mathrm{~m} .19 \mathrm{sec}$. Therefore middle of transit $=16 \mathrm{l} .6 \mathrm{mb} .21 \mathrm{sec}$.

Again, the angle $V=53^{\circ} 12^{\prime} 41^{\prime \prime} .7 ; V F=618^{\prime \prime} .26$, and the time of describing $V F=2 \mathrm{~h} .30 \mathrm{~m} .28 \mathrm{sec}$. Therefore the first external contact will take place at 13 h .35 m . 5 ? 3 sec ., and the last external contact at 18 h .36 m . 49see. The duration will therefore be 5 h .1 m . very nearly.

The duration as thus determined, is not the duration of the transit as scen from the centre of the Earth, or from any point on its surface, but the whole duration from the moment Venus hegins, to the moment Venus ceases to intercept the Sun's rays from any purt of the Earth's surface.

For the time of internal contact, we have $b=969^{\prime \prime} .6$. Then $\sin v=\frac{C \cdot}{b}$, or $v=58^{\circ} 30^{\prime} 32^{\prime \prime} .5 ; \quad$ v $F=506^{\prime \prime} .48$, and time of describing $v F, 2 \mathrm{l} .3 \mathrm{~m} .16 \mathrm{sec}$. Therefore, the first internal contact will take place at 14 h . 3 m . Esec., and the lest internal contact at 18 h .9 m .37 sec .

FHOM TILE EARTI'S CENTRE.

As seen from the centre of the Earth, we lave at the first external contact, $c=$ the sum of their semi-diameters $=1007^{\prime \prime} .6$, and at the first or last internal contact, $b=$ difference of their semi-diameters $=944^{\prime \prime} .8$.
$\operatorname{Sin} V=\frac{F^{\prime} C}{c}=\frac{826.8}{1007.6}$, therefore $V=55^{\circ} 8^{\prime} 28^{\prime \prime} .5$
$V F=c \cos V=575^{\prime \prime} .8$, and the time of describing $V F=$ 2 h .20 m .9 sec . Therefore the first external contact as seen from the E'arth's centre will occur at 13h. 46 m .12 sec ., and the last external contact at $18 h .26 \mathrm{~m} .30 \mathrm{sec}$.

The duration $=4 \mathrm{~h} .40 .3 \mathrm{~m}$.
Again,

$$
\sin v=\frac{F^{\prime} C}{b}, v=61^{\circ} 3^{\prime} 10^{\prime \prime}
$$

$v F=b \cos v=457^{\prime \prime} .286$, and timo of describing it $=$ 1 h .51 m .17 sec . Therefore,

First internal contact, 14h. 15m. 4 sec . Last internal contact, $17 \% .57 \mathrm{~m} .38 \mathrm{sec}$.
Art. 14.-The Sun's R. A. and Dec. are obtained from the Equations,

$$
\begin{align*}
\tan \text { R. A. } & =\tan \text { Long. } \cos \text { obliq. } \tag{17}\\
\tan \text { Dec. } & =\sin \text { R. A. } \tan \text { obliq. } \tag{18}
\end{align*}
$$

From which we find, at conjunction,

$$
\begin{aligned}
\text { Sun's R. A. } & =255^{\circ} 51^{\prime} 53^{\prime \prime} \\
& =17 \mathrm{~h} .3 \mathrm{~m} .27 \mathrm{sec}, \\
\text { and Sun's Dec. } & =22^{\circ} 49^{\prime} 15^{\prime \prime} \mathrm{S} .
\end{aligned}
$$

Adding 2h. 38m. 40sec. converted into sidereal time and then expressed in are, to the sidereal time at 14 h ., we obtain the sidereal time at conj., $=147^{\circ} 25^{\prime} 25^{\prime \prime}$. The Sun's R. A. at the same time $=255^{\circ} 51^{\prime} 53^{\prime \prime}$, therefore the difference $108^{\circ} 20^{\prime} 27^{\prime \prime}$ is the Sun's distance east of Greenwich, or the east longitude of the places at which conjunction in longitude takes place at apparent noon, and that point on this meridim whose geocentric latitude is equal to the Sun's dec., will have the sun in its zenith at the same time. The Sun's dec. was found to be $22^{\circ} 49^{\prime} 15^{\prime \prime} \mathrm{S}$. $=$ the geocentric latitude which, converted into apparent or geographical latitude by Eq. (10), becomes $22^{\circ} 57^{\prime} .5 \mathrm{~S}$.

In the same way we find, that at the time of the first external contact, the Sun's R. A. $=255^{\circ} 44^{\prime}$, and Dec. $22^{\circ} 48^{\prime} 33^{\prime \prime}$ S., and the sidereal time $=104^{\circ} 11^{\prime}$; therefore at this time the Sun will be in the zenith of the place whose longitude is $151^{\circ} 33^{\prime}$ east (nearly), and geocentric latitude $22^{\circ} 48^{\prime} 13^{\prime \prime}$ S., or geographical latitude $22^{\circ} 56^{\prime} 50^{\prime \prime} \mathrm{S}$.

Similarly, we find that at the time of the last external contact the Sun will be in the zenith of the place whose longitude is $81^{\circ} 23^{\prime}$ E. (nearly), and geographical latitude $22^{\circ} 58^{\prime} \mathrm{S}$.

These points enable us to determine the places on the Earth's surface best suited for observing the transit.

TO FIND TIE MOST ELIGIBLE PLAGES FOR OBSERVING A TRANSIT of venus.

Art. 15.-The most eligible places for observation may be letermined with sufficient accuracy by means of a conamon terrestial globe.

From the preceding calculations, it appeurs that the transit will begin at 13 h .46 .2 m . Greenwich mean time, and continue 4 h .40 .3 m ., and that the Sun's declination at the same time will be $22^{\circ} 48^{\prime} \mathrm{S}$.

Elevate the south pole 23° (nearly), and turn the globe until places in longitude $151^{\circ} 33^{\prime} \mathbf{E}$. are brought under ${ }^{\circ}$ the brass
meridian, then the sun will be visible at the time of the first contact, at all places nbove the horizon of the globe, and if the glahe he turned westwat through $4.67 \times 1.5^{\circ}=70^{\circ}$, ull places in the second position, will see the Sum at the time of the last combact. Those phaces which remain above the horizon while the globe is curnel through 70° of longiturle, will see the whole of the transit ; bint in either josition of the glohe, the begiming und end of the transit will not be seen from "ll phaces in the horizon, but only from the points which lie in the great circle passing through the centres of Venis and the Sun.

The place which will have the Sun in the genith at the beginning of the transit, will have the first contact on the Sun's eastern limb, and as thas Sun will be nem the horizon of this phace when the transit ends, the duation will be diminshed by parallax.

Since Venus is in moth latitude, the planet will be depressed by parallax, and conse quently the duration of the transit will be diminished at all places whose south latitude is greater thin the Sun's declination. For the same reason the clamation will be increased at all places north of the 2 2nd parallel of sonth latitude.

I'lerefore from those places from which the whole transit will be visible, these which have the highest north or sonth latitnde, should be selected, in order that the observed difference of clurittion maty be the greatest possible.

The entire duration of this transit may be observed in eastern Siberia, Central Asia, China, und Jupm. Among the most favorable southern stations, we have Australia, Tasmania, New Zoaland, Auckland Island, Kerguelan's Land, and several islands in the South Pacific Ocean. For a comparison of the differences of absolute times of ingress only, or of egress only, stations differing widely both in latitude and longitude should be selected.

TO COMPUTE THE CIRCUMSTANCES OF TIIE TRANSIT SEEN FROM A given place on the eartu's surface.

Aur. 16.-Before proceeding to calculate the times of beginning and end of the transit for a given place, it will be necessary to provide formule for computing the parallax in longitude and latitude, and in order to do this we must find :

1st. The reduction of geographical latitude due to the earth's spheroidal figure.

2nd. The reduction of the carth's equatorial radins to a given geocentric latitude, and

3rd. The altitude and (celestial) longitnde of the Nonagesimal, or in other words, the distance between the poles of the ecliptic and horizon and the (celestial) longitude of the zenith oif the given place at a given time.

But as this transit will not be visible in America, it will not excite that interest in this comntry which it otherwise would. We shall therefore omit the further consideration of it, and apply the following formule to the computation, for Toronto and other points in Canada, of the transit of December, 1882, which will be visible in this country.

FIRST.-REDUCTION OF Latitude on the Earth.

Art. 17.-On accomit of the spheroidal figure of the Earth the meridians are ellipses, and therefore the apparent or geographical latitude does not coincide with the true or geocentric latitude, except at the equator and the poles.

Let x and y be the coordinates of any point on the ellijse, the origin being at the centre. The subnormal $=\frac{l^{2}}{a^{2}} x$, and if ϕ^{\prime} be the geographical latitude and ϕ the geocentric.

We have

$$
\begin{align*}
x \tan \phi & =y \\
& =\frac{l^{\prime}}{a^{2}} x \tan \phi^{\prime} \\
\tan \phi & =\frac{l^{2}}{u^{2}} \tan \phi^{\prime} \\
& =0.9933254 \tan \phi^{\prime} \tag{19}
\end{align*}
$$

Or,

SECOND.--REDUCTION OF THE EARTI'S RADIUS.
Art. 18. - Let r be the radius at a place whose geocentric latitude is ϕ, x and y the co-ordinates of the place, then $x=r$ $\cos \phi, y=r \sin \phi$, and by the properties of the ellipse we have $\iota: a:: y$: the common ordinate on the circle described on the major axis $=\frac{a}{b} r \cdot \sin \phi$.
eartl's a given gesimal, ecliptic of the will not would. nd apply ad other ich will ocentric
ellijse, and if

Therefore,

$$
a^{2}=y^{2}+\frac{a^{2}}{b^{2}} v^{2} \sin ^{2} \phi
$$

Or,

$$
r^{2} \cos ^{2} \phi+\frac{a^{2}}{b^{2}} r^{2} \sin ^{2} \phi=a^{2}
$$

From which $r=a \sec \phi \cos \theta, \quad$ if ${ }_{b}^{a} \tan \phi=\tan \theta$, or regarding a as mity, $\tan \theta=1.003353 \tan \phi$

$$
(\log 1.003353=0.0014542)
$$

$$
\begin{equation*}
\text { and } r=\sec \phi \cos 0 \tag{20}
\end{equation*}
$$

The horizontal parallax of Venus obtained from Eq. (9) or (10), is the angle which the Earth's equatorial radius subtends at Venus, and is not the same for all places, but varies with the latitnde.

The horizontal parallax for any place is found by multiplying the E'quatorial horizontal parallax by the Earth's radius at that place, the equatorial radius being regarded as unity.

THIRD.-TO FIND THE ALTITUDE AND LONGITUDE OF THE NONAGESIMAL.

Art، 19.-Let $H Z \Omega$ be a meridian, $H R$ the horizon, Z the zenith, P the pole of the equator $V E, Q$ the jole of the ecliptic $V O, V$ the equinox. Now since the arc joining the poles of two great circles, measures their inclination, and when produced cuts them 90° from their point of intersection, $N O, V T, V \zeta_{\ell} Q N$, each $=90^{\circ}$. Let s be the Sun's place in the ecliptic, and S his place when referred to the equator, then $V C=$ Sun's A. R. + hour angle from noon $=$ sidereal time

$$
=A
$$

$V N=$ longitude of thic Nonagesimal $N,=m$.
$Z Q=N I$, the altitude oi the Nonagesimal $=a$.
$P Q=$ the obliquity $=\omega$.
$P Z=$ co-latitude $=90^{\circ}-\phi,($ gencentric $)$.
$\angle Z P Q=180^{\circ}-Z P T$

$$
=180^{\circ}-(V T-V C)
$$

$$
=90^{\circ}+A, \text { and } \angle Z Q P^{\prime}=N=V t-V N=90^{\circ}-m
$$

In the triangle $Z P Q$, we have

$$
\cos Z Q=\sin P / / \sin P Q \cos Z P Q+\cos P Z \cos P Q
$$

Or, $\quad \cos a=-\cos \phi \sin \omega \sin A+\sin \phi \cos \omega$.
Put $\quad \sin A \cot \varphi=\tan 0, '$
Then $\quad \cos a=\sin \phi \sec \theta \cos (\omega+\theta)$.
In the triangle $P / Q Q$, we have

$$
\sin Z Q: \sin Z P:: \sin Z P Q: \sin Z Q P
$$

Or, $\sin a \quad: \quad \cos \phi:: \cos A \quad: \cos m$
Or, $\quad \cos m=\cos A \cos \phi \operatorname{cosec} a$.
And from the same triangle we get
$\cos Z P=\sin Z Q \sin P Q \cos Z Q P+\cos Z Q \cos P Q$.
$O_{1}, \quad \sin \phi=\sin a \sin \omega \sin m+\cos a \cos \omega$.
From which

$$
\begin{aligned}
\sin m & =\frac{\sin \phi-\cos a \cos (u)}{\sin a \sin \omega}, \\
& =\frac{\sin \phi-\sin \phi \cos ^{2} \omega+\cos \phi \sin \omega \cos \omega \sin A}{\sin a \sin \omega}, \\
& =\frac{\sin \phi \sin \omega+\cos \phi \cos \omega \sin A}{\sin a},
\end{aligned}
$$

Dividing this by Equation (22), we have

$$
\begin{align*}
\tan m & =\frac{\tan \phi \sin \omega+\cos \omega \sin A}{\cos A} \\
& =\tan \phi \sec A \sec \theta \sin (\omega+\theta) \tag{23}
\end{align*}
$$

Eq. (22), may now be used to find a,

$$
\begin{equation*}
\sin a=\cos A \cos \phi \sec m \tag{24}
\end{equation*}
$$

to find the parallax in longitude.

Arr. 20.-Let Z be the zenith, Q the pole of the ecliptic, S the planet's true place, S^{\prime} its apparent place, $Q S$ the planet's co-latitude $=90-\lambda$, then $Z Q=$ altitude of the nonagesimal $=a$, the angle $Z Q S=$ the planet's geocentric longitude the longitude of the nonagesimal $=h, S Q S^{\prime}=$ the parallax in longitude $=x$, and $S S^{\prime}$ is the parallax in altitude.

From the nature of parallax we have $\sin S S^{\prime}=\sin P$ $\sin Z S^{\prime}$ and from the triangles $S Q S^{\prime}, Z Q S^{\prime}$, we have

23

and by a well known process in trigonometry,

$$
\begin{equation*}
x=\frac{k \sin h}{\sin 1^{\prime \prime}}+\frac{k^{2} \sin 2 h}{\sin 2^{\prime \prime}}+\frac{k^{3} \sin 3 h}{\sin 3^{\prime \prime}}+d c \tag{26}
\end{equation*}
$$

TO FIND THE PARALLAX IN LATITUDE.

Art. 21.-In the last $F i g$. Iet $S^{\prime} Q$ be the apparent co-latitude $=90-\lambda^{\prime}$, then from the triangles $Q Z S$ and $Q Z S^{\prime}$, we have $\cos Z=\frac{\cos Q S-\cos Q Z \cos Z S}{\sin Q Z \sin Z S^{\prime}}=\frac{\cos Q S^{\prime}-\cos Q Z \cos Z S^{\prime}}{\sin Q Z \sin Z S^{\prime}}$ or $\ldots \ldots \ldots \ldots \frac{\sin \lambda-\cos a \cos Z S}{\sin Z S}=\frac{\sin \lambda^{\prime}-\cos a \cos Z S^{\prime}}{\sin Z S^{\prime}}$
but from the same triangles we have

$$
\cos Z S=\sin a \cos \lambda \cos h+\cos a \sin \lambda
$$

and $\quad \cos Z S^{\prime}=\sin a \cos \lambda^{\prime} \cos (h+x)+\cos a \sin \lambda^{\prime}$. which, substituted in the above, give after reduction

$$
\frac{\sin Z S^{\prime \prime}}{\sin Z \overline{S^{\prime}}}=\frac{\tan a \sin \lambda^{\prime}-\cos \lambda^{\prime} \cos (h+x)}{\tan a \sin \lambda-\cos \lambda \cos h}
$$

But from the sine proportion, we have, .

$$
\frac{\sin Z S^{\prime}}{\sin Z S}=\frac{\sin (h+x) \cos \lambda^{\prime}}{\sin h \cos \lambda}
$$

therefore $\frac{\tan a \sin \lambda^{\prime}-\cos \lambda^{\prime} \cos (h+x)}{\tan a \sin \lambda-\cos \lambda \cos h}=\frac{\sin (h+x) \cos \lambda^{\prime}}{\sin h \cos \lambda}$,
or $\quad \frac{\tan a \tan \lambda^{\prime}-\cos (h+x)}{\tan a \tan \lambda-\cos h}=\frac{\sin (h+x)}{\sin h}$,

From which $\tan \lambda^{\prime}=\frac{\tan a \tan \lambda \sin (h+x)-\sin x}{\sin h \tan a}$,
But $\quad \sin x=\sin I^{\prime} \sin a \sec \lambda \sin (h+x)$.
Therefore
$\tan \lambda^{\prime}=\frac{\left.\tan a \tan \lambda \sin (h+x)-\sin I^{\prime} \sin a \sec \lambda \sin / h+x\right)}{\sin h \tan a}$,
Or $\quad \tan \lambda^{\prime}=\frac{\sin (h+x)}{\sin h}\left(\tan \lambda-\sin l^{\prime} \cos \mu \sec \lambda\right)$.

$$
\begin{equation*}
=\frac{\sin (h+x)}{\sin h}\left(1-\frac{\sin P \cos \pi}{\sin \lambda}\right) \tan \lambda . \tag{28}
\end{equation*}
$$

This formula gives the apparent latitude in terms of the true latitude and the true aud apparent hour angles, but it is not in a form for logarithmic computation. We will now transform it into one which will furnish the parallax diirectly, and which will be adapted to logarithms.

Let $y=\lambda-\lambda^{\prime}$, the parallax in latitude,
From Eq. (27) we hove

$$
\tan \lambda=\frac{\sin x}{\sin (h+x) \tan a}+\frac{\sin h}{\sin (h+x)} \tan \lambda^{\prime}
$$

Or $\tan \lambda-\tan \lambda^{\prime}=\frac{\sin x}{\sin (h+x) \tan a}-\tan \lambda^{\prime}\left(\frac{\sin (h+x)-\sin h}{\sin (h+x)}\right)$
Or $\frac{\sin \left(\lambda-\lambda^{\prime}\right)}{\cos \lambda \cos \lambda^{\prime}}=\frac{\sin x}{\sin (h+x) \tan \alpha}-\frac{2 \sin _{2}^{x} \cos \left(h+\frac{x}{2}\right) \tan \lambda^{\prime}}{\sin (h+x)}$
But $2 \sin \underset{\sim}{x}=\sin x \sec \frac{x}{2}$, and

$$
\sin x=\sin P \sin a \sec \lambda \cdot \sin (h+x) \text { by Eq. (25) }
$$

Making these substitutions and reducing we have $\sin y=\sin P \cos a\left(\cos \lambda^{\prime}-\tan a \cos \left(h+\frac{x}{2}\right) \sec -\frac{x}{2} \sin \lambda^{\prime}\right)$
Put $\quad \tan a \cos \left(h+\frac{x}{2}\right)_{\sec } \frac{\pi}{2}=\cot \theta$,
Then $\sin y=\sin p \cos a \operatorname{cosec} \theta \sin \left(\theta-\lambda^{\prime}\right)$,

$$
\begin{equation*}
=\sin P^{\prime} \cos a \operatorname{cosec} \theta \sin ((0-\lambda)+y) \tag{29}
\end{equation*}
$$

Put $\quad \sin P \cos a \operatorname{cosec} \theta=l$, then as before

$$
\begin{equation*}
y=\frac{k \sin (\theta-\lambda)}{\sin 1^{\mu}}+\frac{l^{2} \sin 2(\theta-\lambda)}{\sin 2^{\prime \prime}}+\frac{l^{3} \sin 3(\theta-\lambda)}{\sin 3^{\prime \prime}}+d \mathrm{c} \tag{30}
\end{equation*}
$$

A TRANSIT OF VENUS,

Decmiber 6th, 1889.
Art. 22. - The following heliocentric positions of Veuns have been computed from Hill's Trables of the Planet, and those of the Earth from Delambre's Solar Tables, partially corrected by myself, π being taken $=8^{\prime \prime} .95^{\circ}$ at mean distance :-

宽	

Art. 23.-Passing to the true gencentric places by the aid of Formule (1)-(15), and then applying the correction for aberration (which, by Formule (14) and (15), is found to be, in longitude, $+3^{\prime \prime} .3$; in latitude $+1^{\prime \prime} .4$; Sun's nberration - $20^{\prime \prime} .7$), we obtain the following apparent geocentric places:-

Washington Mean Time.	Sun's Apparent Geoentric Longitude.	Venus's Apparent Geocentric Longitude.	$\begin{gathered} \text { Veuns's } \\ \text { Appar. Geoc. } \\ \text { Latitude. } \end{gathered}$
Dec. 5d. 21h.	$254^{\circ} 24^{\prime} 27^{\prime \prime} .4$	$254^{\circ} 34^{\prime} 58^{\prime \prime} .3$	$12^{\prime} 28^{\prime \prime}$ S.
" 22 h .	9659.8	$33 \quad 26.7$	1149
23h.	2932.2	31 505	1110
" 24h.	3204.7	$30 \quad 23.6$	1030.8
Dec. 6d. 1h.	3437.1	2850.0	951.6
" 2 h .	3709.5	2720.3	912.5
" 3 h .	3942.0	2.548 .6	833.4

Log of Venus's distance from the Earth at noon $=9.423550$. Formule (9) and (12) give us $P=33^{\prime \prime} .9$, and $d=31^{\prime \prime} .46$, both of which may be regarded as constant during the transit.

Interpolating for the time of conjunction, and collecting the elements, we have as follows:-

Constructing a figure similar to Fiy. 4, and employing the same notation as in Art. 13, we obtain from these elements the following results:-
$u=9^{\circ} 6^{\prime} 14^{\prime \prime}, 4$; relative hourly motion in orbit, $=24 y^{\prime \prime} .1$; least distance between centres, $10^{\prime} 39^{\prime \prime}$;
the aid of aberration longitude, $20^{\prime \prime} .7$), we

Venns's ppar. Geoc. Latitude.

First external contact, Dec. 5 d .20 h .50 .7 m .
First intermal do., " 21 h .11 m . Washington Last internal do., Dee. Gl. 2h. 48 m . $\}$ Mean Time. Last extermal do., " 3h. 8m. As seen from the Earth's centre.

By the formule of Art. 1.t, we find, that at the time of the first external contact, the Sun will be in the zenith of the place whose longitude is $45^{\circ} .9$ East of Washington, and latitude $22^{\circ} 37^{\prime}$ S. ; and at the last external contact the Sun will be in the zenith of the place whose longitude is $48^{\circ} .3 \mathrm{~W}$., and latitude $22^{\circ} 41^{\prime} \mathrm{S}$.

From these data we find, by the aid of a terrestrial globe, as in the case of the transit of 1874 , that the entire duration of this transit will be observed in the greater part of the Dominion of Canala, and in the United States. As Venus is south of the Sun's centre, the duration will be shortened at all places in North America, by reason of the effect of purallax. The times of first contact will be retarded at places along the Athantic coast of Canada abd the Uuited States, while the Islands in the western part of the Indim Oceun will have this time accelerated. These localities will therefore afford good stations for determining the Sim's parallax. The time of last contact will be retarded in New South Wales, New Zealimd, New Hebrides, and other Islauds in the western part of the Pacific Ocean, and accelerated in the United States and the West India Islands. The duration will be lengthened in ligh southern latitudes, and especially in the Antarctic continent. The astronomical conditions necessary for a successful investigation of the Sun's parallax, will therefore he very favorable in this transit; and it is to he hoped that all the availahle resources of modern science will be employed to secure accurate observations, at all faverable points, of the times of ingress and egress of the planet on the Sun's disk, in order that we may determine with accuracy this great astronomical unit, the Sum's disir zee from the Earth, and thence the dimensions of the Solar System.
to compute the transit foil a given place on the earth's surfacl.

Art. 24.- Let it be required to find the times of contact for Toronto, Ontario, which is in latitude $43^{\circ} 39^{\prime} 4^{\prime \prime}$ N., and longitude 5 h .17 m .33 sec . west of Greenwich, or 9 m .22 sec . west of Washington.

Since the parallax of Vemis is small, the times of ingress and egress, as seen from 'loronto, will not differ much fiom those found for the Earth's centre. Subtracting the difference of longitude between Toronto and Washington, fiom the Washington Mean Time of the first and last exterual contacts, as given in the last article, we find the Toronto Mcan Time of the first external contact to be December, 5d. 20h. 413 m ., and the last extermal contact to be Tlecember, 6d. 2 h .58 .6 m , when viewed from the centre of the earth.

The ingress will therefore ocen on the east, and the egress on the west side of the meridian, and the time of ingress will consequently be retarded, and the time of egress accelerated by parallax. We therefore assume for the first external contact, December od. 20h. 44 m ., and for the last external eontact, December 6d. 21.54 m . Toronto Mean Time ; or, December $5 d .20 \mathrm{~h} .53 \mathrm{~m}$. 22sec, and December 6id. 3 h .3 m .29 sec . Washington Mean Time.

From the elments given in Art. $: 33$, compute for these dates the longitudes of :Venus and the Sm, Vmus's latitnde, and the Sidereal Time in are, at Toronto, thus:-

Washington Mean Time.	Sun's Apparent Longitude.	Venus's Appar. Longitude.	Venus's Latitude.	Sidereal Timo at Toronto.
Dec. 5 d .20 h .68 m .22 s .	$254^{\circ} 94^{\prime} 10^{\prime \prime} .5$	$254^{\circ} 35^{\prime} 8^{\prime \prime} .5$	$12^{\prime} 32^{\prime \prime} .4 \mathrm{~S}$	$206^{\circ} 15^{\prime} 06^{\prime \prime}$
" 6d. 3h. 3 m .2 ses .	$\underline{254} 30390.5$	$\begin{array}{lllll}254 & 25 & 43.5\end{array}$	831.3	$299 \quad 0 \quad 17$

The relative positions of Venus and the Sim will be the same if we retain the Sun in his true position, and give to Venus the difference of their parallaxes, reduced to the place of observation by Art 17.

Compute next by Formule (19) to (30), the parallax of Venus in longitude and latitude, and apply it with its proper sign to the apparent longitude and latitude of Venus, as seen from the Earth's centre ; the results will give the planet's apparent position with respect to the Sun, when seen from the given place, and the contact of limbs will evidently happen when the apparent distance between their centres becomes equal to the sum of their semi-diameters.

We now proceed with the computation :-
By Eq. (19), $\quad \tan \phi^{\prime}=9.9795 .44$
const. $\log =9.997091$
$\tan \phi=\overline{9.976635}$, therefore $\phi=43^{\circ} 27^{\prime} 34^{\prime \prime}$
const. $\log =0.001454$
$\tan \theta=\overline{9.978089}$, therefore $\theta \leq 43^{\circ} 33^{\prime} 19^{\prime \prime}$
By Eq. (20),
$\cos \theta=9.860164$
see $\phi=10.139146$
$\log r=9.999310$
Diff. of Parallaxes, $\quad 24^{\prime \prime} .1=1.394452$
Reduced Parallax, $24^{\prime \prime} .78=\overline{1.393762}$

almitude and longitude of the nonagesimal, at the first assumed time.

By Eq. (21),
$\sin A=9.645731 n$
$\cot \phi=10.023366$
$\tan \theta=\overline{9.669097} n$
$0=154^{\circ} 58^{\prime} 42^{\prime \prime}$
$\omega=23^{\circ} 27^{\prime} 09^{\prime \prime}$
$\omega+\theta=1 \overline{78^{\circ} 25^{\prime} 51^{\prime \prime}}$
By Eq. (23),
$\tan \phi=9.976634$
$\sec A=10.047275 n$
$\sec \theta=10.042801 n$
$\sin (\omega+\theta)=8.437493$
$\tan m=\overline{8.504203}$

$$
m=181^{\circ} 49^{\prime} 44^{\prime \prime}
$$

Cheek by Eq. (22),

$$
\begin{aligned}
\cos A & =9.952725 n \\
\cos \phi & =9.860854 \\
\operatorname{cosec} a & =10.186201 \\
\cos m & =9.999780 n \\
m & =181^{\circ} 49^{\prime} 44^{\prime \prime}
\end{aligned}
$$

Longitude of Venus $=254^{\circ} 35^{\prime} 8^{\prime \prime} .5$
Long. of the Nonngesimal $=181^{\circ} 49^{\prime} 44^{\prime \prime}$
Therefore,
$h=\overline{72^{\circ} 45^{\prime} 24^{\prime \prime} .5}$. Then by Eq. (26).
$\sin P^{\prime}=6.079337$
$\sin a=9.813790$
sec $\lambda=10.000003$
$k=\overline{5.893139} \quad h_{i}^{2}=1.7863$
$\sin h=9.980029 \quad \sin 2 h=9.7529 \quad \sin 3 h=9.792 n$
$\operatorname{cosec}]^{\prime \prime}=\underline{\delta .314425} \quad \operatorname{cosec} 2^{\prime \prime}=\underline{5.0134} \quad \operatorname{cosec} 3^{\prime \prime}=\underline{4.837 n}$
$15^{\prime \prime} .402=\overline{1.187593}, \quad " .0003=\overline{\overline{4} .5526} \quad=\overline{\overline{8} .308 n}$
The last two terms being extremely small may be omitted, therefore the parallax in longitude $=+15^{\prime \prime} .4=x$.

Parallax in latitude.
By Eqs. (29) and (30).

$$
\begin{aligned}
& \tan a=9.933672 \\
& \text { sin } P^{\prime}=6.079337 \\
& \cos \left(h+\frac{x}{1}\right)=9.471860 \\
& \sec \frac{x}{2}=10.000000 \\
& \cot \theta=\overline{0.405532} \\
& \theta=75^{\circ} 43^{\prime} 34^{\prime \prime} . \bar{\delta} \quad \sin (\theta+\lambda)=9.986782 \\
& \lambda=12^{\prime} 32^{\prime \prime} .4 \mathrm{~S} . \quad \text { cosec } 1^{\prime \prime}=5.314425 \\
& \theta+\lambda=75^{\circ} 56^{\prime} 6^{\prime \prime} .9 . \quad{ }^{\prime} 18^{\prime \prime} .808=\overline{1.274289} \\
& h^{2}=1.9461 \\
& \sin 2(\theta+\lambda)=9.6734 \\
& \operatorname{cosec} 2^{\prime \prime}=5.0134 \\
& " .0004=\overline{4} .6329 \\
& \lambda_{i}^{9}=7.919 \\
& \sin 3(\theta+\lambda)=9.869 n \\
& \text { cosec } 3^{\prime \prime}=4.837 \\
& =\overline{8.625 n}
\end{aligned}
$$

Therefore the parallax in latitude $=+18^{\prime \prime} .8=y$.
In the same say, we find at the second assumed time,

$$
\begin{gathered}
a=27^{\circ} 37^{\prime} ; m=317^{\circ} 23^{\prime} 46^{\prime \prime} ; h=-62^{\circ} 58^{\prime} 2^{\prime \prime} .5 \\
x=-10^{\prime \prime} .3 ; y=+20^{\prime \prime} .8
\end{gathered}
$$

Hence we have thr following results:-

	hovarime.	h.atitue.	Langortudr.	Latitube.
Venus's I'arallax.	$\begin{array}{r} \because 4^{\circ} 355^{\prime \prime \prime} .5 \\ +15^{\prime \prime} .4 \end{array}$	$\begin{gathered} 1 \cdots 8.48 \\ +18^{\prime \prime} .8 \end{gathered}$	$\begin{array}{r}254^{\circ}: 55^{\prime} 43^{\prime \prime} .5 \\ -10^{\prime \prime} .3 \\ \hline\end{array}$	$\begin{aligned} & 8.31 " .3 \mathrm{~s} . \\ & +200^{\prime \prime} .8 \end{aligned}$
Sun's Difference.		12 51 ".		
	$\begin{aligned} & 11^{\prime} 13^{\prime \prime} .4 \\ & \text { Veuns Enst. } \end{aligned}$		$\begin{aligned} & 14 \times 17 ̄ " .3 \\ & \text { Yenus West. } \end{aligned}$	

Construct a figure similar to fïg. 4, make $O B=11^{\prime} 13^{\prime \prime} .4$, and $C N=14^{\prime} 17^{\prime \prime} .3$ the differences of longitude ; draw $B I I$ nud $N I^{\prime}$ below $A D$, becuuse Venus is in south latitude, and make $B I I=12^{\prime} 51^{\prime \prime} .2$, and $N P=8^{\prime} 52^{\prime \prime} .1$ the differences in latitude ; then $I I I$ will represent Venus's apparent orbit. Join II C, $P($, and let V and X be the positions of the planet at the times of the first and last contacts respectively. The times of describing $I I V$ and $I^{\prime} X$ are required to be found.

Proceeding in the same manner as in Art. 13, we find by plane Trigononotry, $I I=\boldsymbol{l}=\boldsymbol{j}$ sec of the inclination of apparent orbit $=B N *$ see $B N Q(N Q$ being parallel to $H I ')$

$$
\tan B N Q=\frac{B H-N P}{N C A+B C}, B N Q=8^{\circ} 52^{\prime} 4 l^{\prime \prime}=E O F .
$$

II $P=1552^{\prime \prime} .8=$ relative motion of Venus in 6 h .10 m ., therefore Venus's relative hourly motion $=251^{\prime \prime} .8$

$$
\begin{gathered}
\tan B C H=\frac{B I I}{B C^{\prime}}, B C H=48^{\circ} 52^{\prime} 23^{\prime \prime} \\
H C=B C \text { see } B C H=1023^{\prime \prime} .8 \\
H C E=41^{\circ} 7^{\prime} 37_{0}^{\prime \prime}, \text { hence } H C F=50^{\circ} 0^{\prime} 18^{\prime \prime} \\
C F^{\prime}=H C^{\prime} \cos H C F^{\prime}=658^{\prime \prime} ; H F^{\prime}=H C \sin H C F^{\prime}=784^{\prime \prime} .35 \\
C^{\prime} V \text {, the sum of the semi-diameters }=1007^{\prime \prime} .7 . \\
\cos V C F=\frac{C F}{C V}, V C F=49^{\circ} 13^{\prime} 54^{\prime \prime} \\
V F=C V \sin V C F=763^{\prime \prime} .19 \\
H V=H F-V F=21^{\prime \prime} .16 .
\end{gathered}
$$

Time of describing $/ / V=5 \mathrm{~m}$, 2sec., and time of deseribing $V F^{\prime}=3 \mathrm{~h} .1 \mathrm{~m} .51 \mathrm{sec}$.
Therefore the first exterml contact will occur, Dee. bil 20h. $49 \mathrm{~m} .2 \mathrm{sec} .$, and the last extermal contact, Dec. 6 d .2 h .52 m .44 sec ., Mem Time at 'loronto.

In n similn manner we obtntin $V V^{\prime}=67^{\prime \prime} .83$; therefore, $V v=85^{\prime \prime} .36$ and the time of describing $V v=20$ m. 20sec.

Therefore the first intermal contact will oceur, Dee. Sil. 21 h , 9 m . 22 sec , and the last, Dee. Gil. $2 \mathrm{~h} .32 \mathrm{~m}, 24$ sec., Mem 'Time at Toronto; or expressing these in Mcan Civil 'Time, we have for Toronto :-

First extermal contact, December 6th, 8 l. 19 m. . A.M.
First internal " " $9 \mathrm{~h} .9 \cdot 3 \mathrm{~m}$., "
Last intemal " ". 2 h. $32 \cdot \mathrm{tm} ., \mathrm{P} . \mathrm{M}$.
Last external " " 2 h .52 .7 m ., "
Least distance between the centres $10^{\prime} \cdot 58^{\prime \prime}$.
If the highest degree of accuracy attainable be required, we must repeat the computation for the times just obtained. For ordinury purposes, however, the above times will be found sufficiently accurate.
[n observing thansit and solar eclipses, it is necessiny to know the exact point on the Sun's elisk, at which the apparent contact will take place. The angle contained by a radins drawn from the point of contact and a declination circle passing through the Sun's centre, is called tho angle of position, and is computed as follows: Let $L S S$. . be in right ingled spherical triungle, X the equinox, S the Sun's centre, $L S$ a circle of latitude, perpendicular; of course, to $S X, S D$ a declination circle; then $D S X$ is a right angled spherical triangle, and in the present case, $S D$ will lie to the west of $S L$, becanse the Sun's longitude lies between 180° and 270°, i.e, between the autumnal equinox and the solstitial colure.

Then we have

$$
\begin{align*}
& \cos X S=\cot S X D \tan D S L \\
& \tan D S L=\cos \text { long } \tan \omega \tag{31}
\end{align*}
$$

Or
The Sun's longitucle at 8 h. $49 \mathrm{~m} .$, A.M., is $254^{\circ} 24^{\prime} 23^{\prime \prime} .2$.

33

Rejecting 180° we have $\cos 74^{\circ}-24^{\prime}-23^{\prime \prime}=9.429449$

$$
\begin{aligned}
\tan \omega & =9.637317 \\
\tan D S L & =9.066766 \\
D S L & =6^{\circ}-39^{\prime} \cdot 6^{\prime \prime}
\end{aligned}
$$

Now the angle $V C^{\prime} E^{\prime}=$ angle $V C F^{\prime}$ - angle $E C F^{\prime}$

$$
=40^{\circ}-21^{\prime} 12^{\prime \prime}
$$

Therefore the angle of prosition is equal to the angle $D S L+$ the supplement of $V C E$, or $146^{\circ}-17^{\prime} .9$ from the northern limb towards the east.

In the same way we may compute the angle of position at the last external contact.

From a point in longitule $71^{\circ} 65^{\prime}$ W. of Greenwhich, and latitude $45^{\circ} 21^{\prime} .7 \mathrm{~N}$, at or near Bishop's College, Lennoxville, we find by the preceding method,

First external contact December 6th, 9 h. 19.5 m ., A.M.

First intemal	"	"	9 h .39 .4 m, , "
Last internal	$"$	$"$	$3 \mathrm{~h} .2 .6 \mathrm{~m} .$, P.M.
Last extermal	"	"	3 h .23 m.

Mean Time at Lennoxville.
Least distance between the centres $10^{\prime}-59^{\prime \prime} .8$.

From a point in longitude $64^{\circ}-24^{\prime}$ W. of Greenwich, and latitude $45^{\circ} 8^{\prime} 30^{\prime \prime} \mathrm{N}$., at or near Acadia College, Wolfville, Nova Scotia.

First external contact December 6th, 9 h. 48.7 m., A.M.

First internal	"	"	$9 \mathrm{~h} 28.4 \mathrm{~m} .$,	"
fast internal	"	"	3 h 31.7 m ., P.M.	
Last external	"	"	$3 \mathrm{~h} 51.8 \mathrm{~m} .$.	

Mean Time at Wolfville.
Least distance between the centres $10^{\prime}-59^{\prime \prime}, 5$.

THE SUN'S PARALLAX.

Art. 25.-A transit of Yenus affords us the best means of determining with accuracy the Sun's parallax, and thence the distances of the Earth and other planets from the Sun.

The same things may be determined from a transit of Mercury, but not to the same degree of accuracy. The complete investigation of the methods of deducing the Sun's parallax from an observed transit of Venus or Mercury, is too refined and delicate for insertion in an elementary work like this. We add, however, the following method winich is substantially the same as found in most works on Spherical Astronomy, and, which will enable the student to understand some of the general principles on which the computation depends.
to find the sun's parallax and distance from the earth, FROM THE DIFEERENCE OF THE TIMES OF DURATION OF A transit of venus, obsery

Art. 26.-Let T and $T^{\prime \prime}$ be the Greenwich mean times of the first and last contacts, as seen from the E'arth's centre; $T+t$ and $T^{\prime \prime}+t^{\prime}$ the Greenwich mean times of the first and last contacts, scen from the place of observation whose latitude is known ; S and G the true geocentric longitudes of the Sun and Venus at the time T; P the horizontal parallax of Venus; π the Sun's equatoiial horizontal parallax; v the relative hourly motion of Vemas and the Sum in longitude ; L the geocentric latitude of Venus, and g Venus's hourly motion in latitude. Now, since Venus and the Sun are nearly coincident in position, the effect of paraliax will be the same if we retain the Sun in his true position, and give to Venus the difference of their parallaxes. This difference or relative parallax is that which influences the relative positions of the two bodies.

Than $a(P-\pi)$, and $l(P-\pi)$ will be the parallax of Venus in longitude and latitude respectively, where a and b are functions of tho observed places of Veuus which depend on the observer's position on the Earth's surface. The apparent difference of longitude at the time T-ill be
$G-S+a(P-\pi)$; and therefore the apparent difference of longitude at the time $T+t$

$$
=G-S+a(P-\pi)+v t
$$

and the apparent latitude of V enus at the time $T+t$.

$$
=L+b(P-\pi)+g t .
$$

sit of Mere complete 's parallax too refined like this. ubstantially Astronomy, ome of the
ihe earth, tion of a ces.
imes of the $T^{\prime}+t$ and st contacts, known ; S and Venus 1us; π the nly motion latitude of Now, since he effect of true posixes. This ; the rela-
of Venus 3 are funcad on the rent differ-

Now at the time $T+t$ the distance between the centres of Venus and the Sun, is equal to the sum of their semi-diameters, $=c$, then we have

$$
\begin{aligned}
c^{2}= & \left\{G-S+a(P-\pi)+v t^{\prime 2}+\{L+b(l-\pi)+g t\}^{2}(32) .\right. \\
=(G-S)^{2}+L^{2}+ & 2\{a(G-S)+b L\}(l-\pi)+2 t \\
& \{v(G-S)+!L\}
\end{aligned}
$$

neglecting the squares and products of the very small quantities t, u, b and $(P-\pi)$.

But when seen from the centre of the Earth at the time T, we have
$c^{2}=(G-S)^{2}+L^{2}$, which substituted in the last equation, gives

$$
\begin{align*}
t & =-\frac{a(G-S)+l L}{v(G-S)+g h} \cdot(P-\pi) \tag{33}\\
& =\delta \cdot(P-\pi), \text { suppose }
\end{align*}
$$

Therefore the Greenwich time of the first contact at the place of obscrvation $=T+\delta(P-\pi)$.

If δ^{\prime} be the corresponding quantity to δ for the time $T^{\prime \prime}$, then the time of the last contact at the place of obscrvation

$$
=T^{\prime \prime}+\delta^{\prime}(P \cdots \pi)
$$

and if Δ be the whole duration of the transit then

$$
\Delta=I^{\prime}-T^{\prime}+\left(\delta^{\prime}-\delta\right)\left(l^{\prime}-\pi\right)
$$

Agaiu, if Δ^{\prime} be the duraticn obscrved at any other place, and β and β^{\prime} corresponding values of δ and δ^{\prime}, we have

$$
\begin{array}{ll}
\Delta^{\prime}=T^{\prime}-T+\left(\beta^{\prime}-\beta\right)(P-\pi) \\
\text { Therefore } & \Delta^{\prime}-\Delta=\left\{\left(\beta^{\prime}-\beta\right)-\left(\delta^{\prime}-\delta\right)\right\}(P-\pi) \\
\text { Or, } & P^{\prime}-\pi=\frac{\Delta^{\prime}-\Delta}{\left(\beta^{\prime}-\beta\right)-\left(\delta^{\prime}-\delta\right)}
\end{array}
$$

$$
\text { Now } \quad \frac{P}{\pi}=\frac{\text { Earth's distance from the Sun }}{\text { Earth's distance from Venus }}
$$

$$
\text { Therefore } \frac{P-\pi}{\pi}=\begin{aligned}
& \text { Venus's distance from the Sun } \\
& \text { Venus's distance from the Earth }
\end{aligned}
$$

$$
\pi=\frac{1}{3}(P-\pi)
$$

$$
=n \text {, a known quantity }
$$

(35).-(Hymers's Astron.)

If the first or last contact only be observed, the place of observation should be so selected that, at the begimning or end of the transit, the sun may be near the horizon (say 20° above it) in order that the time of beginning or end may be accelerated or retarded as much as possible by parallax.

Again, since t is known in Eq. (33), being the difference of the Greenwich mean times of beginning or end, as seen from the Earth's centre and the place of observation, we have from Eq. (32) by eliminating c,

$$
\begin{gather*}
(I-\pi)^{2}+\frac{2 a(G-S+v t)+2 \prime(L+g \prime)}{a^{2}+b^{2}}(P-\pi)= \\
-\frac{t^{2}\left(v^{2}+g^{2}\right)+2!\left(v\left(G-G^{\prime}\right)+L g\right)}{a^{2}+b^{2}} \tag{36}
\end{gather*}
$$

Or, $(P-\pi)^{2}+A(P-\pi)=B$, suppose.
And let $(P-\pi)^{2}+C(P-\pi)=D$, be a similar equation derived from observation of the first or last contact at another place, then

$$
\begin{array}{lc}
& (A-C)(I-\pi)=B-D \\
\text { Or, } & P-\pi=\frac{B-D}{A-C}, \\
\text { And } & \pi=\frac{1}{n}(I-\pi), \text { as before } \tag{37}
\end{array}
$$

the sun's distance from the earth.
Art. 27.-If D^{\prime} represent the Sun's distance, and r the Earth's equatorial radius, then

$$
\begin{align*}
I^{\prime} & =\begin{array}{c}
\frac{r}{\sin \pi} \\
\end{array} \\
& =r \frac{206264 \cdot 8}{\pi} \tag{38}
\end{align*}
$$

From the observations made during the Trausit of 1769 , the Sun's equatorial horizontal parallax (π) at mem distance, was determined to be $8^{\prime \prime} .57$ which, substituted in the last equation, gives for the Sun's mean distance 24068.23 r, or in round numbers $95,382,000$ miles ; but recent investigations in both physical and practical astronomy, have proved beyond all cloubt that this value is too great by about four millions of miles.
e of obserend of the oove it) in lerated or nee of the from the from Eq.
$\pi)=$ r equation at another

1769, the tance, was equation, und nomh physical that this

Iu determining the Solar parallax from a transit of an inferior planet, two methods are employed. The first, and by far the hest, consists in the comparison of the observed duration of the transit at places favorably situated for shortening and lengthening it by the effect of parallix. This method is independent of the longitudes of the stations, but it cannot be always applied with advantage in every transit, and fails eutirely when any atmospherical circumstances interfere with the observations either at the first or last contact. The other consists in a comparison of the absolute times of the first external or internal contact only, or of the last external or internal contact only, at places widely differing in latitude. The longiudes of the stations enter as essential elements, and they must be well known in order to obtain a reliable result. The transit of 1761 was observed at several places in Europe, Asia, and Africa, but the results obtained from a full discussion of the observations by different computers, were unsatisfactory, and exhibited differences which it was impossible to reconcile. That transit was not therefore of much service in the solution of what has been justly termed "the noblest problem in astronomy." The most probable value of the parallax deducei from it, was $8^{\prime \prime} .49$. The partial failure was due to the fact that it was impossible to select such stations as would give the first method a fair chance of success, and as there was considerable doubt about the correctness of the longitudes of the various observers, the results obtained from the second method could not be depended on.

The unsitisfactory results obtained from the transit of 1761 , gave ris: therer efforts for observing the one of 1769 , and observis wee sent to the Island of Tahiti, Manilla, and other points in the Pacific Ocean ; to the shores of Hudson's Bay, Madras, Lapland, and to Wardhus, an Island in the Arctic Ocean, at the north-east extremity of Norway. The first external and internal contacts were observed at most of the European observatories, and the lest contacts at several places in Eastern Asia and in the Pacific Ocean ; while the whole duration was observed at Wardhus, and other places in the north of Europe, at Tahiti, \&c. But on account of a cloindy atmosphere at all the northern stations, except Wardhus, the entire duration of the
transit could not be observed, and it eonsequently happened that the observations taken at Wardhus exercised a great influence on the final resul'. This, however, would have been a matter of very little importance, if the observations taken there by the observer, Father Hell, had been reliable, but they exhibited such differences from those of other observers, as to lead some to regard them as forgeries. Λ careful examination of all the available observations of this transit, gave $8^{\prime \prime} .57$ for the solar parallax, and consequently $95,382,000$ miles for the Sun's mean distance.

The first serious doubts as to the aecuracy of this value of the Solar parallax, began to be entertained in the year 18.54, when Professor Hansen found from an investigation of the lunar orbit, and especially of that irregularity ealled the parallactic equation whieh depends on the Earth's distance from the Sun, that the Moon's place as deduced from the Greenwieh observations, did not agree with that computed with the received value of the Sun's distance, whieh he found to require a considerable diminiution. 'The same conclusion was confirmed by an examination of' a long series of lunar observations taken at Dorpat, in Russia. The value of the solar parallax thus indieated by theory and observation, is $8^{\prime \prime} .97$ which is about four-tenths of a second greater than that obtained from observations of the transit of Venus in 1769 ; and if this value of the parallax be substituted in E_{1}. . (38), it will be found to give a diminution of more than $4,000,000$ miles in the Earth's mean distance from the Sun.

A few years ago M. SeV Verrier, of Paris, found, after a most laborions and rigorous investigation of the observations on the Moon, Sun, Venus, and Mars, taken at Greenwich, Paris, and other observatories, that an angmentation of the Solar parallax or a dimination of the hitherto received distanee of the Earth from the Sun, to an amount almost equal to that previously assigned by Professor Hansen, was absolutely necessary to account satisfactorily for the lunar equation which required an increase of a twelfth part, and for the excessive motions of Venus's nodes, and the perihelion of Mars. He adopted $8^{\prime \prime} .95$ for the Solar parallax.

The most recent determination of the velocity of light com. bined with the time which it reguires to travel from the Sun to
pened that flluence on matter of re by the bited such some to of all the the solar win's mean
lue of the 8.54, when mar orbit, equation that the tions, did te of the o dimininination of n Russia. heory and a second transit of substiof more the Sum. er a most us on the 'aris, and trallax or rth from assigned mut satisease of a des, and parallax. yht com. e Sun ta
the Earth, viz: 8 minutes and 18 seconds very nearly, affords another independent proof that the ecmmonly reeeived distance is too great by about $\frac{1}{3} \frac{1}{0}$ th part. The value of the Solar parallax indieated by this method is $8^{\prime \prime} .80$.

The great eccentrieity of the orbnt of Mars eauses a considerable variation in the distance of this planet from the Earth at the time of opposition. Sometimes its distance from the Earth is ouly a little more than one-third of the Earth's distance from the Sun. Now, if Mars when thus favorably situated, be observed on the meridians of places widely differing in latitnde-sueh as Dorpat and the Cape of Good Hope-and if the observations be reduced to the same instant by means of the known velocity of the $p^{\text {limet, we shall, after correeting for refraetion and instru- }}$ mental crrors, possess data for determining with a high degree of iccuraey, the planet's distance from the Earth, and thence the Sun's distance and parallax. The oppositions of 1860 and 1862, were very fivorable for such olservations, and attempts were made at Greenwich, Poulkova, Berlin, the Cape of Good Hope, Williamstown, and Victoria, to determine the Solar parallax at those times. The mean result obtained from these observations, was $8^{\prime \prime} .95$ which agrees exactly with the theoretical value of the parallax previously obtained by M. LeVerrier.

Hence, we find that a diminution in the Sum's distanee, as commonly reeeived, is indicated, 1st, By the investigation of the parallactie equation in the lumar theory by Professor Hansen and the Astronomer Royal, Professor Airy; 2nd, By the lunar equation in the theory of the Eerth's motions, investigated ly M. LeVerrier ; 3rd, By the excessive motions of Venns's nodes, and of the perihelion of Mars, also investigated by the sume distinguished astronomer ; 4th, By the veloeity of light, which is 183,470 miles per second, being a deerease of nearly 8,000 miles; and 5 th, By the observations on Mars during the oppositions of 1860 and 1862.

A diminution in the Sun's distance will necessarily involve a corresponding change in the masses and dianeters of the bodies composing the Solar system. The Earth's mass will require an increase of about one-tenth part of the whole.

Substituting LeVerrier's solar parallax (8".95) in Eq. (38),
the Earth's mean distance from the Sun becomes $91,333,670$ which is a reduction of $4,048,800$ miles. The Sun's apparent diameter at the Earth's mean distruce $=32^{\prime} 3^{\prime \prime} .64$, and in order that a body may subtend this angle, at a distance of $91,333,670$ miles, it must have a diameter of 851,700 miles, which is a diminution of 37,800 miles. The distances, diameters, and velocities of all the planets in our system will require corres. ponding corrections if we express them in miles. Since the periodic times of the planets me known with great precision, we can easily determine loy Kepler's third law, their mean distance nom the Sun in terms of the Earth's mean distance. Thus: if T and t be the periodie times of the Earth and a planet respectively, and D the planet's mean distance, then regarding the Earth's mean distance as unity, we have $T^{\frac{2}{3}}: t^{\frac{2}{3}}:: 1: D$

$$
\text { Or, } \quad D=\left(\frac{t}{T}\right)^{\frac{2}{3}},
$$

In the case of Neptune the mean distance is diminished by about $121,000,000$ miles. Jupiter's mean distance is diminished $21,063,000$ miles, and his diameter becomes 88,296 miles, which is a decrease of 3,868 miles. These numbers shew the great importance which belongs to a correct knowledge of the Solar parallax.

31,333,670 s apparent d in order $11,333,670$ vhich is a eters, and ire corres. Since the ecision, we n distance巳. Thus : a planet regarding $:: 1: D$
(39). ished by iminished les, which the great the Solar

A TRANSIT 0F MERCURY.

May 6tif, 1878.

Transits of Mercury occur more frequently than those of Venus by reason of the planet's greater velocity. The longitudes of Mercury's nodes are about 46° and 226°, and the Earth arrives at these points about the 10 th of November and the 7 th May, transits of this planet may therefore be expected at or near these dates, those at the ascending nodo in November, and at the descending node in May.

Mercury revolves round the Sun in 87.9693 days, and the Earth in 365.256 days. The converging fractions approximating

$$
\text { to } \frac{87.9603}{365.256} \text { are } \frac{7}{29}, \frac{13}{54}, \frac{33}{137} \text {, はंe, }
$$

Therefore when a trunsit has occured at one node another may be expected after an interval of 13 or 33 years, at the end of which time Mercury and the Earth will oceupy nearly the same position in the heavens.

Sometimes, however, transits occur at the same node at intervals of 7 years, and one at either node is generally preceded or followed by one the other node, at an interval of $3 \frac{1}{2}$ years.

The last transit at the descending node occurred in May, 1845, and the last at the ascending node in November, 1868. Hence the transits for the 19 th century will occur, at the descending node May 6th, 1878 ; May 9th, 1891 ; and at the descending node November 7th, 1881, and November 10th, 1894.
computation of the transit of 1878.
From the tables* of the planet we obtain the following heliocentric positions:-

[^2]| Washington Mean Time. | Mercury's Helioc. Longitude. | Mercury's Itelioc. Intilude. | Log. Rad. Vector. |
| :---: | :---: | :---: | :---: |
| 1878, May 6d. 0h. | $225^{\circ} 52^{\prime} 57 \prime \prime 0$ | $7^{\prime} 17^{\prime \prime} .3 \mathrm{~N}$ | 9,6545239 |
| " lh. | 226 0 15.4 | 623.4 | 9,6546389 |
| 2 h . | $226 \quad 733.6$ | 529.6 | 9,6547535 |
| " 3 h . | 2261451.6 | 435.8 | 2,6548677 |

The following positions of the Earth have been obtained from Delambre's Solar Tables, corrected by myself, π being taken equal to $8^{\prime \prime} .95$ at the Farth's mean distance :-

Washingtoun Mean	Earth's Ifelioc. Longitude.	Log. Earth's Rad.
1878, May 6d. Oh.	$226^{\circ} 0^{\prime} 38^{\prime \prime} .9$	10,0040993
1h.	226304.0	10,0041038
2 h .	$\begin{array}{llll}226 & \text { 5 } & 29.1\end{array}$	10,0041082
3 h .	$\begin{array}{llll}226 & 7 & 54.2\end{array}$	10,0041126

The Sun's true longitude is found by subtracting 180° from the Farth's longitude.

Passing to the true geocentric places by Formule (3), (4), and (5), we obtain :-

Washington Mean	Merenry's true Geoce. Longitude.	Mercury's true Gcoc Latitude.
1878, May 6d. 0h.	$46^{\circ} 6^{\prime} 59^{\prime \prime} .4$	$5^{\prime} 53^{\prime \prime} .6 \mathrm{~N}$.
" 1h.	$46 \quad 5 \quad 20.4$	510.2
" 2 h .	46348.3	426.8
" 3h.	$\begin{array}{llll}46 & 2 & 16.3\end{array}$	343.4

Formula (7) gives log. distance from Earth at 1h. $=9.7466455$. This will be required in formulæ (14) and (15) for finding the aberration.

Formula (9) gives $P=15^{\prime \prime} .9$.
The semi-diameter of Mercury at the Earth's mean distance, $3^{\prime \prime} .34=d^{\prime}$, therefore by Eq. (12), $d=5^{\prime \prime} .98$.

Aberration in Longitude $=+6^{\prime \prime}$. $\mathbf{6 7}$, by Eq. (14).
Aberration in Latitude $=+3^{\prime \prime} .34$, by Eq. (15).
The Sun's semi-diameter $=15^{\prime} 52^{\prime \prime} .3$. (Solar T'ables).
The Sun's aberration $=-20^{\prime \prime} .25$.

43

Correcting for nberration we obtain the upparent places as follows :-

$\begin{aligned} & \text { Warhington Mean } \\ & \text { Time. } \end{aligned}$	Meveury's Apgar. Geors Longitude.	Moreury's Ap). Qeoc, Lat.	$\begin{gathered} \text { Sun'y } \\ \text { Appar. Longitude. } \end{gathered}$
1878, May, 6d. Oh.	$46^{\circ} 6^{\prime} 59.0$	$5^{\prime} \quad 56.10 \mathrm{~N}$,	$46^{\circ} 0^{\prime} 18^{\prime \prime} .7$
" 1 l .	$46 \quad 5 \quad 27.0$	513.5	46 2 43.8
6 2		430.1	$\begin{array}{lll}46 & 5 & 8.9\end{array}$
" :3	$46 \quad 2 \quad 26.9$	346.7	46734.0

Interpolating for the tine of conjunction and collecting the elements, we have

Wushington mem time of conjunction in longitude,
May 6d. 1h. 41 min .17 sec.
Mercury's ind Sun's longitude........... ... $46^{\circ} 4^{\prime} 23^{\prime \prime} .6$
Mercury's latitude..... $4^{\prime} 43^{\prime \prime} .6 \mathrm{~N}$.
Sun's hourly motion in longitnde $\mathbf{2}^{\prime} 25^{\prime \prime} .1 \mathrm{E}$.
Mercury's hourly mation in longitude...... $1^{\prime} 32^{\prime \prime} .1 \mathrm{~W}$.
Mercury's hourly motion in latitude......... $43^{\prime \prime} .4 \mathrm{~S}$.
Sun's equatorial horizomtal parallax......... $8^{\prime \prime} .87$
Mercury's equatorial horizontal parallax ... $15^{\prime \prime} .9$
Sur's semi-diameter..... $15^{\prime} 52^{\prime \prime} .3$
Mercury's semi-diameter $\quad 5^{\prime \prime} .9$
Employing the same notation as in Art. 13, the preceding elements give the following results. Relative hourly motion in longitude $=3^{\prime} 57^{\prime \prime} .2 ; n=10^{\circ} 22^{\prime} 7^{\prime \prime} ; m n=241^{\prime \prime} .13$ the relative hourly motion in apparent orbit. $C F$ the least distance between the centres $=279^{\prime \prime} ; E F=51^{\prime \prime} .04$; time of describing $\boldsymbol{E} \boldsymbol{F}=12 \mathrm{~m} .42 \mathrm{sec}$. Since Mercury is north of the Sun's centre at conjunction, and moving southward, $\boldsymbol{L} F$ will lie on the right of (C ' (see Fig. 4), and the middle of the transit will take place at $1 \mathrm{~h} .54 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

Sum of semi-diameters $=958^{\prime \prime} .2$

$$
V=16^{\circ} 55^{\prime} 44^{\prime \prime} ; V F=916^{\prime \prime} .68 ;
$$

Time of describing $V F=3 \mathrm{~h} .48 .1 \mathrm{~min}$. = half of the duration. Subtracting 3 h .48 .1 min . from, and adding the same to
the time of the middle of the transit, we obtain the times of the first and last contacts, as seen from the Earth's centre, thus :

First external contact May 6d: 10 h .5 .9 min . A, M.
Last external contact " 5 h. 42.1 min . P.M.
Mean time at Washington,
The places which will have the Sun in the zenith at these times can be found in the same mamer as in Art. 14, with the aid of the following elements :-

Obliquity of the Ecliptic $23^{\circ} 27^{\prime} 25^{\prime \prime}$.
Sidereal time at Washington at mean noon of May 6th (in arc) $44^{\circ} 24^{\prime} 50^{\prime \prime} .46$.

Since the relative parallax is only $7^{\prime \prime}$ the time of the first or last contact will not be much influenced by the parallax in longitude and latitude, and therefore the preceding times for Washington are sufficiently accurate for all ordinary purposes.

The mean local time of beginning or end for any other place. is found by applying the difference of longitude, as below :The lougitude of Washington is 5 h .8 m .11 sec . W. The longitude of Toronto is 5 h .17 m .33 sec . W.
Therefore Toronto is 9 min .22 sec . west of Waslington.
Then, with reference to the centre of the Earth, we have for Toronto,

First external contact May 6d. 9 h .56 .5 m . A.M.
Last external contact " $5 \mathrm{~h} .32 .7 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. Mean time.
For Quebec, longitude 4 h .44 m .48 sec . W.
First external contact May 6d. 10h. 29.3m. A.M.
Last external contact " 6 h .6 .5 m. P.M. Mean time.
For Acadia College, longitude 4h. 17.6 m . W.
First external contact May 6d. 10h. 56.5 m . A.M.
Last external contact " 6h. 32.7 m . P.M. Mean time.
For Middlebury College, Vermont, longitude 4 h .52 .5 m . W. First external contact, May 6h. 10h. 21.5m. A.M. Last external contact " 5 h. 57.7 m. P.M. Mean time at Middlebury.

APPENDIX.

Eclipses of the Sun are computed in precisely the same way as transits of Venus or Mercury, the Moon taking the place of the planet. The Solar and Lunar Tables furnish the longitude, latitude, equatorinl parallax, and semi-diameter of the Sun and Moon, while Formule (19)-(30) furnish the parallax in longitude and latitude. If the computation be made from an ophemeris which gives the right ascension and declination of the Sun and Moon instead of their longitude and latitude, we can dispense with formulæ (21) and (23), and adapt (25), (26), (29), and (30) to the computation of the parallax in right ascension and declination. In Fig. 6, let Q be the pole of the equator, then $L Q$ is the co-latitude $=90^{\circ}-\phi ; Z Q S=h$, the Moon's true hour angle $=$ the Moon's A. R. - the sidereal time; $S Q S^{\prime}$ is the parallax in A. R. $=x$, and $Q S^{\prime}-Q S$ is the parallax in declination $=y$. Put $Q S$, the Moon's true north polar distance $=90-\delta$, then Formule (25) and (26) become,

$$
\begin{array}{r}
\sin x=\sin P \cos \phi \sec \delta \sin (h+x) \quad \text { (25, bis). } \\
=k \sin (h+x) \\
\text { Or, } \quad x=\frac{k \sin h}{\sin 1^{\prime \prime}}+\frac{k^{2} \sin 2 h}{\sin 2^{\prime \prime}}+\frac{k^{3} \sin 3 h}{\sin 3^{\prime \prime}}+d \mathrm{cc} \quad \text { (26, bis). }
\end{array}
$$

Again, the formulæ for determining the auxiliary angle $\boldsymbol{\theta}$ in (29) becomes,

$$
\cot \theta=\cot \phi \cos \left(h+\frac{x}{2}\right) \sec \frac{x}{2} .
$$

$$
\begin{align*}
& \text { And (29) becomes, } \\
& \quad \sin y=\sin P \sin \phi \operatorname{cosec} \theta \sin ((\theta-\delta)+y) . \quad(29, \text { bis }) . \\
& \quad=k \sin ((\theta-\delta)+y) \\
& y=\frac{k \sin (\theta-\delta)}{\sin 1^{\prime \prime}}+\frac{k^{2} \sin 2(\theta-\delta)}{\sin 2^{\prime \prime}}+\frac{k^{3} \sin 3(\theta-\delta)}{\sin 3^{\prime \prime}}+\& \mathrm{cc} \tag{30,bis}
\end{align*}
$$

These parallaxes when applied with their proper signs to the right ascensions and declinations of the Moon for the assumed times, furnish the appervent right ascensions and declinations. The difference between tho apparent $A . N$. of the Moon and the true A. R. of the Sun, must be rednced to seconds of arc of a great circle, by multiplying it by the cosine of the Moon's apparent declination. The apipurent places of the Moon with respect to the Sun will give the Moon's appurent orbit, and the times of mparent contact of limbs are found in the same way as deseribed in Art. 13. The only other correction neeessury to take into accome, is that for the nugnentation of the Moon's semidiameter, due to its altitude. Tho angmentation may be taken from a table prepared for that purpose, and which is to be found in all good works on Practical Astronomy, or it may, in the case of solar eclipses, be computed by the following formule :-
to find the augmentation of the moon's semi-diameter.
Let C 'and M be the centres of the Earth and Moon, A a point on the Earth's surface, join $U M, A M$, and produce $C A$ to Z; then $M C Z$ is the Moon's trine renith distance $=Z=\operatorname{arc} Z S$ in Fig. 6 ; and $M A Z$ is the apparent zenith distance $=Z^{\prime}=$ urc $Z S^{\prime}$ in the same figmre. Represent the Moon's semi-diameter as seen from C, by d; the semi-diameter as seen from A by d^{\prime}; the apparent hour angle $Z Q S^{\prime}$ by h^{\prime}, and the apparent declination by δ^{\prime}, then

$$
\begin{align*}
\frac{d^{\prime}}{d} & =\frac{C M}{A M}=\frac{\sin Z^{\prime}}{\sin Z} \\
& =\frac{\sin Z S^{\prime}}{\sin Z S} \quad\left(\text { See } r^{\prime}(y .6 .)\right. \tag{40}\\
& =\frac{\sin h^{\prime} \cos \delta^{\prime}}{\sin h \cos \delta}, \text { by Art. } 21 . \\
d^{\prime} & =d \cdot \frac{\sin h^{\prime} \cos \delta^{\prime}}{\sin h \cos \delta} \tag{41}
\end{align*}
$$

This formula furnishes the augmented semi-diameter at once. It can be easily modified so as to give the angmentation directly, but with logarithms to seven decimal places, it gives the apparent spmi-diameter with great precision.

As examples we give the following, the first of which is from Loomis's Practicul Astronomy :-

Ex. 1. Find the Moon's pamallax in A. R. and deelimation, and the augruented semi-diameter for lhiladelphin, Lat. $39^{\prime} 57^{\prime} 7^{\prime \prime} \mathrm{N}$. when the horizontal parallax of the place is $59^{\prime} 36^{\prime \prime} .8$, the Moon's declination $24^{\circ} 5^{\prime} 11^{\prime \prime} .6 \mathrm{~N}$. , the Moon's true hour angle $61^{\circ} 10^{\prime}$ $47^{\prime \prime} .4$, and the semi-diameter $16^{\prime} 16^{\prime \prime}$.

$$
\begin{gathered}
\text { Ans.-Parallax in A. } R \cdot, 44^{\prime} 17^{\prime \prime} .09 \\
\text { " Dee., } 20^{\prime} 10^{\prime \prime} .1 \\
\text { Angmented semi-dium }=16^{\prime} 26^{\prime \prime} .15 .
\end{gathered}
$$

Ex. 2. Required the times of begiming mad end of the Solar Eclipse of October 9-10, 1874, for Edinburgh, Lat. $55^{\circ} 57^{\prime} 23^{\prime \prime} \mathrm{N}$. Long. 12m. 43 see. West, from the following elements obtained from the English Nantical Almanac:-

Greenwich mean tinte of conjunction in $A R$,
Oct. 9 d. 22 h .10 m .11 .4 sec.

Suns and Moon's Λ R	$105^{\circ} 36^{\prime}$	$30^{\prime \prime}$
Moon's declination S	\% 39	8.9
Sun's declination S'	639	34.1
Moon's hourly motion in $\Lambda \boldsymbol{R}$.	26	21.9
Sun's do	2	18.2
Moon's hourly motion in Declination. S	13	48.3
Sun's do S'		$5 € .9$
Moon's Eqnatorial Horizontal Parallax.	53	59.6
Sun's do do		9.0
Moon's true semi-diameter...	14	44.2
Sun's do	16	3.8
Greenwich sidereal time at coujumetiou.	17123	32.8

Assuming, for the begiming, 20h. 55 m , and for the end, 23 h .10 m . Greenwieh mean time, we obtain from the preceding elements aud formule the following results, which may be verified by the Student:-

Geocentric latitude $=55^{\circ} 16^{\prime} 41^{\prime \prime}$; reduced or relative Parallax $=53^{\prime} 43^{\prime \prime} .2$.

	20h. 55m. G. M. T.	23h. 10m. G. M T.
Moori's A R	$105^{\circ} 3^{\prime} 27^{\prime \prime} .6$	$196^{\circ} \quad 2^{\prime} 46^{\prime \prime} 9$
Sun's AR.	$195 \quad 3336.8$	$195 \quad 38 \quad 47.8$
Moon's Dec	$5 \quad 2150.9 \mathrm{~S}$.	ᄃ 5254.6 S .
Sun's Dec..	6 $38 \quad 22.9 \mathrm{~S}$.	64030.9 S .
Sid. Time at Edin. (in are).	1492151.5	1831224.1
Moon's true hour angle...	$45 \quad 4136.1$ E.	125022.8 E .
Moon's Parallax in A.R.	+ 2149.4	+ 648.5
Moon's do in Dec...	+ 4625.1	+ 4732.7
Moon's apparent A R.	$195 \quad 2517.0$	$196 \quad 935.4$
Moon's do Dec.	$\begin{array}{llll}6 & 8 & 16.0 & \text { S. }\end{array}$	$6 \quad 4027.3 \mathrm{~S}$.
Diff. of ΛR in seconds of arc of great circle.	$496^{\prime \prime} \cdot 9$ Moon W.	1835'.1 Moon E.
Diff. Dec.........	$30^{\prime} 6^{\prime \prime}, 9$, Moon N .	$3^{\prime \prime} .6$ Moon N.
Aug. semi-diam of Moon...	888". 4	$890^{\prime \prime} .5$.

Eclipse begins October 10d. $8 \mathrm{~h} .43 \mathrm{~m} . ~ 32 \mathrm{sec}$. A.M.
Eclipse ends "، 10 h .58 m .22 sec . A.M.
Mean time, at Edinburgh. Magnitude . 369 Sun's dian.

[^0]: Toronto, March 4th, 1873.

[^1]: * Tables of Venus, by G. W. Hill, Esq., of the Nautical Almanac Office, Washington, U. S.
 \dagger Solar Tables, by llansen and Olufsen: Copenhagen, 180̃3. Delambre's Solar T'ables. Leverrier's Solar Tables, Paris,

[^2]: * Tables of Mercury, ly Joseph Winlock, Prof. Mathematics U. S. Navy, Washington, 1864,

